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NEAR-FROZEN QUASI-ONE-DIMENSIONAL FLOW
I. THE RESERVOIR PROBLEM

By P. A. BLYTHE
Aeronautics Department, Imperial College

(Communicated by M. J. Lighthill, Sec.R.S.—Received 24 November 1966)
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Non-equilibrium quasi-one-dimensional nozzle flows are considered in the limit when the relaxa-
tion time is large compared with some characteristic flow time. Non-uniformities which arise in the
reservoir region, for convergent-divergent nozzles, are treated by the method of matched asymp-
totic expansions (see, for example, Van Dyke 1964). It is shown that even away from this stagnation
zone the solution does not proceed simply in integral powers of the rate parameter. The correct
solution is deduced for a vibrationally relaxing gas.

It is noted, however, that this near-frozen solution does not necessarily remain valid at down-
stream infinity where the overall entropy production may become important. Solutions valid in
this region are presented in part IT of this paper.

1. INTRODUCTION

~ The phenomenon of freezing in expanding non-equilibrium gas flows is now well docu-
§ > mented and understood. A large number of numerical solutions have been obtained for
@) E various rate processes and in a few relatively simple cases it has proved possible to attack the
[i 5 problem analytically. Associated with these analytical solutions has been the realization
T O that the sudden freezing point (Bray 1959) is a turning point of the governing differential
=W equations (Blythe 1964.a,b): this fact has been exploited, for example, in the limit when the

rate parameter, or Damkohler number A, is large, to obtain the asymptotic frozen level of
the energy in the lagging mode. (A is a characteristic ratio of the flow time to the time scale
of the rate process.) The principal application of this approach has been to quasi-one-
dimensional nozzle flows.

Not surprisingly, these solutions do not remain valid, for a convergent-divergent nozzle,
if the freezing point (turning point) occurs sufficiently far upstream of the throat, which
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certainly implies that A is not large and it is in fact the limit A— 0 that is considered in this
paper. A distinction is made between these flows, which are termed near-frozen, and those
governed by the existence of a freezing point at a finite station in the flow. The latter case is
characterized by a near-equilibrium behaviour upstream of the freezing point (see figure
1 (a)). Fora convergent-divergent nozzle, as A— 0, the transition layer in the neighbourhood
of the freezing point and the near-equilibrium region merge in the reservoir zone, where the
flow time scale is locally ‘large’ (see figure 1 (b)). It is apparent that the usual description
of the transition layer is inadequate in this case.
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Ficure 1. Flow regimes and characteristic internal energy distribution for (a) A large, () A small.
o is the vibrational energy and @ its local equilibrium value.

Near-frozen flows in which the velocity is everywhere non-zero have been considered
elsewhere (see, for example, Bloom & Ting 1960). For such flows it is assumed that the
solution can be expanded in integral powers of A. If this type of solution is to be applicable
in the present context then it can only be downstream of the reservoir (or stagnation) zone,
since a necessary condition on its validity is that the forcing term in the rate equation be
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small everywhere compared with the convective term. A demonstration that this approach
does yield results which are singular at upstream infinity is given in § 3.

Within the reservoir zone the structure of the solution depends on the rate of growth of
the nozzle area ratio 4. The family of nozzles considered here are such that A~ |x|* as
x——o00, where x is an appropriate non-dimensional distance.

For this class of nozzle shapes the convective and forcing terms are of the same order of
magnitude when |x| = O(A~V@+D) (see§4). Theform of the equations simplifies considerably
in this region. In particular, the zero-order approximations to the energy and velocity
distributions are uncoupled and the problem reduces to solving a system of first-order linear
differential equations in which the mass flow enters as an unknown parameter. This
quantity depends on conditions at the sonic point, or critical point, defined by the frozen
sound speed, the position of which lies outside the range of validity of the reservoir zone
solution.

Downstream of the reservoir zone the behaviour is predominantly that of a frozen flow.
The obvious approach is to assume that a conventional expansion in integral powers of A is
valid in this region, and then attempt to determine the arbitrary constants that arise by
matching the upstream behaviour of the near-frozen solution with the downstream expan-
sion of the reservoir solution. However, from this downstream limit it is apparent that for
n < 1 the first-order perturbation cannot be O(A) in the near-frozen region (see §5). For
n> 1 the first-order perturbation is O(A) but non-integral powers are present in higher
order terms and the departure from the conventional near-frozen solution culminates with
the occurrence of a term O(A2log A) (see §§ 6 and 7). As the mass flow rate is determined
from this near-frozen solution it follows that ultimately this logarithmic term will be fed
back into the reservoir solution.

An important extension of the approach outlined for the reservoir zone would be its
application to the stagnation region in blunt body flows. Although such flows are not con-
sidered here it is interesting to note the limiting behaviour of an approximate solution to
the problem. If the velocity is represented by its Newtonian value (Freeman 1958) the flow
within the shock layer can be computed for arbitrary values of A. For a particularly simple
rate equation (Blythe 1963) an expression for the stand-off distance in axially symmetric
flow, for example, can be obtained in closed form. In the limit A— 0 the discrepancy from
the fully frozen result is not O(A) but O(Aln A)—a direct consequence of the stagnation
layer near the body surface. The singular nature of the frozen limit for blunt body flows has
also been discussed more recently by Conti (1966).

The analysis is outlined specifically for the de-excitation of the vibrational mode in a
diatomic gas. Although the assumed rate equation (see §2) for this process is simpler in
form than the corresponding equations for dissociation, ionization, etc., its adoption
involves no loss in generality for the solution within the reservoir zone. In that region, the
departure from equilibrium is ‘small’ and the zeroth approximation to any rate equation is
linear in terms of the non-equilibrium energy; consequently, the solution within the zone
adopts a similar form for all rate processes (though differences of detail do arise in the
algebra). Similar remarks can be made about the near-frozen solution for x = O(1), since
there the zeroth order solution is the fully frozen one for which the forcing term is

identically zero.
26-2
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An interesting feature of the near-frozen solution is that it does not necessarily remain
valid as ¥ —-+-c0 even though the relaxation time 7 becomes unbounded in this limit. If

X
f 7-ldx diverges as x—>00

it appears that the internal energy ¢ in the inert mode will eventually decay to ground level,
which is the ambient equilibrium state at downstream infinity. (This mode of behaviour
can occur for arbitrary values of A; see Eschenroeder 1962.) However, the convergence of
this integral is not sufficient to ensure the validity of the near-frozen solution for large x. It
is also necessary that e dg

"7

is bounded in this limit. This latter integral is obviously associated with the entropy pro-
duction. Indeed Ac can be specifically identified as an effective heat addition (Johannesen
1g61). Constraints under which both these integrals are convergent are discussed in § 3. It
is sufficient to note here, for the vibrationally relaxing gas considered, that if the ‘entropy’
integral is convergent then so too is .

f 7-1dx.

When the entropy integral is divergent the solution for large positive x has several
interesting features. The most important of these would seem to be the possible existence
of compression regions through which a relatively rapid de-excitation takes place and in
which the temperature gradient is positive. Such regions are analogous to condensation
shocks. Appropriate solutions in these cases will be presented for a vibrationally relaxing
gas in part LI of this paper.

A complete list of the notation used in both parts of this paper is given in appendix 11T at
the end of part II.

2. THE CONSERVATION AND RATE EQUATIONS

The equations governing the quasi-one-dimensional flow of an ideal vibrationally relaxing
gas (Johannesen 1961 ; Stollery & Park 1964) can be written in non-dimensional form as

pud = m, (2-1)
1dp 1 1d7_ 1de .
sds 71 Tde ~ Tdx’ (2:24)
or pT~H0=D = exp UU dT(,T}, (2-2b)
S Tot bt = STy o, (2:3)
do _
w7 = ApQ(T) [3(T) 0], (2+4)

where p is the density, u the velocity, 4 the cross-sectional area at any station x, o the vibra-
tional energy, 7 the local equilibrium value of ¢ corresponding to the translational tempera-
ture 7, and Q the relaxation frequency. y is the specific heat ratio for the active modes of
translation and rotation and m is a non-dimensional mass flow rate. The suffix co denotes
initial conditions where the flow is not necessarily in equilibrium. If, however, u,, = 0 then
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0w = 0. Itis this particular case which corresponds to flow through a convergent-divergent
nozzle.
The above non-dimensional variables are defined by

A T S
10‘“'0;)) T—To,o’ Q”‘Q;O,
RT?’ JRTL) P/ (RTG)AY
A’ x'
A:ZZ’ x:/_f}

where primes denote the dimensional quantity, R is the gas constant, 4’ is the minimum
nozzle height (or radius), and the suffix ¢ defines conditions at the minimum cross-section.
A is the rate parameter defined by
w0 Qo l Klay
A=boel =7 // >
JRTZ) To
where 7’ is the relaxation time and a’ is the frozen sound speed. The limit A— 0 implies
frozen flow and it is this situation which is of interest here.
It is assumed that the equilibrium distribution of the vibrational energy is given by the

usual expression 9,

7= p /T 1 (=7)
which holds for a system of harmonic oscillators. 6, is the non-dimensional characteristic
temperature of vibration.

A discussion of the validity of the rate equation (2-4) is beyond the scope of this paper.
From the work of Shuler (1959) a necessary condition would appear to be that the fraction
of excited oscillators should be small. However, it is usual, as here, to assume that the
equation remains valid for all values of the translational temperature. Some evidence does
exist to the contrary (Zienkiewicz & Johannesen 1963), but unfortunately no suitable
alternative to (2-4) has yet been proposed. Any error in (2-4) is probably not important in
the stagnation region where the flow is, in some sense, near to equilibrium and the true rate
equation will presumably, to a first approximation, reduce to the form (2-4) with a suitable
modification in the definition of 7. For similar reasons the extension of the present analysis,
within the stagnation zone, to the flow of a dissociating or ionizing gas is straightforward.

The relaxation frequency is in general a rather complex function of the translational
temperature. Several expressions fit the experimental data reasonably well. Phinney (1964)
correlates the experimental data for diatomic gases by means of an expression of the type

(2-6)

3
Qoc T# exp:——B (%’1) }, (2-8)
but Widom (1957) suggests that
H
Qo Tﬁoexp{Do(;) }, (2-9a)

or Qoc T exp{Dl -3:} (2-9b)
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There is some theoretical justification for each of these expressions. Although they all fit
the data fairly well over a reasonably broad temperature range, (2-8) and (2+9) have quite
distinct behaviours at low temperatures, where available experimental results are insuffi-
cient to suggest which model is more likely to be appropriate in this limit. This difference
may have important practical consequences on the asymptotic solution far downstream
(see §3 and part II). The analysis in part I will be outlined for a general Q(7).

3. SINGULARITIES IN NEAR-FROZEN SOLUTIONS

Near-frozen solutions, A— 0, of equations (2-1) to (2-4) can be constructed via suitable
expansions in A. The conventional expansion (Bloom & Ting 1960) is

0= 0,+ Aoy (x) + A0y (x) + ..., } (3:1)
T = Ty(x) + AT} (%) + A2Ty(x) + ...
and the zero-order approximation gives the fully frozen result
po = T e,
2 3 (3-2a)
w=|u+ 0= ]
T, is defined as a function of x by
_ 2y .t m
Vy-D ] y24 27 (1 o o<
T 1y [qury_l(l 1‘0)] et (3:-25)
Corresponding first-order solutions are, for example,
o) = f (5) [T (5) — 0] ds, (33 4)
_ 17_"9) Lo, f Iy (s) ,
(=T) 7= 00— -0 [ 2o (3:5)
where dy =v(To) Fy = po (T (34)

and x,, denotes the initial value of x. For a convergent-divergent nozzle, for which u, = 0
and 0, = G, X, 1s taken as —oo0.

If x,, is finite, u, == 0, and the mass flow rate is known and independent of A (such a case
would be supersonic flow through a divergent nozzle), then the expansion defined by (3:1)
does indeed represent a valid solution for x = 0(1) and equations (3-2) and (3:3) give the
leading terms in this solution. For this solution to be valid for all x requires a constraint on
the minimum rate of growth of the nozzle (sce below and part II).

If the flow is initially subsonic this solution is singular at the geometric throat (u3 = y7y),
but, for u, = 0, the solution is easily rendered uniformly valid, for x = O(1), by taking into
account the dependence of the mass flow on the rate parameter. The mass flow m is strictly
defined by conditions at the sonic point (x = ,/(y7")) which, for A = 0, lies downstream of
the throat. As A— 0 the distance between the sonic point and the geometric throat becomes
‘small’ and it is sufficient to make the solution well behaved at the geometric throat. It
follows from (3-1) that m(A) should also be expanded in integral powers of A if u,, = 0.
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A similar scheme for u,, = 0 is outlined in detail in §4 and the reader is referred to that
section for a practical application of the approach.

However, a more serious restriction than the difficulty at the throat arises when u,, = 0.
For such flows the integrals defined in (3-34) and (3-35) do not necessarily converge as
x——o00. If the nozzle shape is described asymptotically by

A~ 13l 3 a4, (35)

where n >0, then, apart from some constant factor, (3-34) indicates that
do/dx~—|x|™ (n=1)

as x——o0. Consequently ¢; remains bounded only if n > 1. Moreover, the restriction
n > 1 merely postpones the occurrence of any singular behaviour to a later stage. It is easily
shown that the corresponding expression for 7, is singular, at — oo, for all values of n > 0.

'This mathematical difficulty obviously arises because the local value of the rate para-
meter, as opposed to its characteristic value, becomes large in the reservoir (stagnation)
region, thus violating the near-frozen assumption. A method of obtaining a valid solution
within this region is described in § 4. It is also shown in § 5 that some account has to be taken
of the behaviour in the reservoir zone in constructing a valid solution for x = O(1).

In addition to thissingularbehaviour as x—— 0o, there s a possible further non-uniformity
in conventional near-frozen solutions which is associated with the asymptotic nozzle shape
far downstream. For nozzles such that

A~x 3 A, x77 (3-6)
r=0
as ¥x—00, the integrals defined in (3-3) do not necessarily converge when the relaxation
frequency is defined by (29), or more generally when the relaxation frequency decays as
some power of the temperature in the limit 7' 0. It is apparent, from the fully frozen
solution, that the integral defining o, will converge only if

1
V> I':I;‘(}‘:f)*é\, (3'7)

which is equivalent to asking not only that 700 but also that
“ds
To
is bounded. One might expect that the divergence of this integral will correspond to an
eventual decay of the vibrational energy towards its local equilibrium value, which at large

distances is presumably ground level. However, the condition governing the convergence
of the integral defining 77/7; is even more restrictive. In this case

V> o (3-8)

0’](.96) do'l

in order that ‘ f T

is bounded for large x. This integral can be regarded as an entropy-producing term and
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a similar quantity has been called the pseudo-entropy (Broer 1951). The implications of
(3-7) and (3-8) when these inequalities are not satisfied are discussed at length in part IL.T
In this paper it is assumed that (3-8) holds, thus automatically satisfying the inequality (3-7)
fory>1,4>0.

No difficulty arises for nozzle shapes which are asymptotically described by (8:6), if
() decreases faster than any power of 7. Consequently expressions of the type (2-8) always
lead to the result that the vibrational energy freezes. If (3-8) is satisfied both (2-8) and (2-9)
imply asymptotic frozen solutions. However, the magnitude of the frozen energy level will
depend on the choice of temperature dependence. Since the various expressions all provide
reasonable fits to the available experimental data this choice may not be important in
practice, provided that no extrapolation below the temperatures at which the data is
known is necessary. Even then, if the flow does freeze, the choice may still not be significant
since the dominant contributions to, for example, the final frozen level come from regions
where the temperature is not small. Note that these remarks hold only if (3-8) is satisfied
(see part IT).

4. THE FLOW THROUGH A CONVERGENT—DIVERGENT NOZZLE—THE RESERVOIR ZONE

For u, = 0 the conventional near-frozen solution is singular as x ——oc0. In this stagnation
region, referred to as the inner layer (see figure 1 ()), it is necessary to seek an alternative
solution. Downstream of this layer, where x = O(1), some perturbation about the frozen
solution should be valid and this will be referred to as the outer solution. The asymptotic
nozzle shape, far upstream, belongs to the family defined in equation (3-5).

If €=0,—0, (4-1)

then, from equation (2-3), _ B

1_T:uu2_u€’ (4-2)
2y Y

and itis assumed that 1 — 7, 4? and ¢ are all of the same order of magnitude in the inner layer

where u is ‘small’. It follows from (2-25) that in this region

u

1—p =% LY=Lt 0@, (4-3)
2y 7

If Q and 7 are expanded in Taylor series near 7" =1, (x——o00), the rate equation can be
re-written in terms of ¢ and u as

de —A 1 — —
a:7[1~—2—7{1+(7“1)w1}u2— — (l—w]) 6] {1—{-61?*,"77—}6—61’}/27 u?
+62{y2_7,1 w21 16}]+0(Au5), (4-4)
1 (d"Q)
where w, =3 (amf") ) (45)
- (ﬁ) 4-6
= wi\dT) 1, (4-6)

T The possible divergence of similar integrals has also been noted recently by Cheng & Lee (1966) for
a dissociating gas.
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‘The continuity equation, together with (4-3), provides a second relation between ¢ and «
which is 1 2
Au [1 — Z_Te- ot 0(u4)] — m(A). ' (47)

From (8:5) it is apparent that _
(8:5) itis app u~ (mfag) [x| ",

as ¥——00. Hence, with regard to the form of equation (4-4) a non-trivial scaling of the
variables in the inner layer is

U = An/(n+l)U’ € = AZn/(n+l)E’ x = A—l/(n+1)X, (4‘8)
where the variables U, E and X are O(1). The equations satisfied by E and U are

7’ 1 2]
dX—l—UI:(l—l—l : )E o=ty

A2n/(n 1)
- [Bo B2+ b, EU b, U]+ O(AtirD), - (4:9)

where the constants b, b,, and b, are defined in appendix 1, and
[KIPU g Ay | K] 1 Aoty ]

= m(A) L+ AP DU {(r— 1) 1} E)] 4+ (O(A0), O(AT0)).  (4-10)

As yet m = m (A) is unknown. Its variation with A can be found from conditions near the
sonic point in the outer region (see § 5). It seems reasonable to suppose that to zero order it
will be O(1) and independent of A. This implies, as will be verified by the matching, that its
zero-order value is that for fully frozen flow. The corresponding zero-order quantities U,
and £, satisfy

U, = _m_o |X|—~n’ (4-11)
dE —1m, -
45 | & {1+1~~«}|X1 o=l g X, (+12)

where m, is the zero-order approximation to m(A). Not surprisingly the solution for the
velocity, to this order, is uncoupled from the energy distribution, apart from the dependence
onmy, and is given solely by the asymptotic form of the continuity equation. Some simplifica-
tionin the factors occurring in (4-12) is possible. If C, is the specific heat at constant pressure,
including the contribution C, from the vibrational mode, and C,, is the corresponding
specific heat including only the contribution from the active modes of translation and
rotation, then

7=1_ G _ _ Guib, .
Lol E= 2, - Da =g (4-13)
It is convenient to define o
Glayt) = et f s5-1e=s ds (414)
t
(see appendix II). The solution of (4:12), satisfying the boundary condition E,—0 as
X—>~—OO, iS C 1—n
— n—1)/(n+1) .
Ey= ¥ G(1+n’ )’ (#:15)
1 my C ib., @ ‘ ‘ 1 Cp © VA kX |n+1
— = o Lyib, = k| X|n+1, 41
where 24, C, ° k= 2Fim, C,,” | X (4-16)

27 VoL, 262. A.
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It is worth noting that the upstream limit, X——o0, of (4-15) gives

_C con 20 1o s —(2+4n):|
By iy g IR0 0( X e |

which is consistent with the usual inverse power series expansion about stagnation conditions
(Hall & Russo 1959).

Of more interest in the present context is the downstream limit | X|—0 of (4-15). The
behaviour of the solution in this limit provides matching conditions for the upstream (inner)
limit of the near frozen outer solution (see §5). As | X| -0

by s () (2
FO(XP (X | @)
ifn1.Ifn=1
Ey=C[—In|X|—4x—k|X|?In | X| —$k(k—1) | X2+ O(| X|*In | X])], (4-18)
where k=Ink+y, (4-19)

and v, is Euler’s constant. In equation (4+17) the terms are written in descending order of
magnitude for » > 1, and the magnitude of the error term depends on sgn (n—1).
The inner solutions for p and T follow directly from equations (4-2) and (4-3). Thus, to

first order
1T = Ao DT (LU~ Ey),
R (4-20)
1 —p = A2n/(n+l)t__ (___.9__ +E > ,
’ y \2(y—1) 0

where U, and £ are given by (4-11) and (4-15).

5. FIRST- AND SECOND-ORDER SOLUTIONS IN THE OUTER LAYER
5-1. Discussion

In the outer region #, p, T, and hence F are O(1). Physically, it can still be expected that
¢ will be o(1) since the behaviour in this region is primarily that of a near-frozen flow in
which ¢ changes relatively slowly. From the form of the rate equation (2-4), expressed in
outer variables as

de/dx = AF (0, —0—¢), (51)
it might be presumed that ¢is O(A), but it will be seen that this is so only if # > 1. In terms
of the outer variables equations (4-17) and (4-18) become

C n+1
n—1 2

€~ l:lx' =1 __ A2n/(+DEn-D/(n-D] (i) +A2
n-+1

k|x12+ O(Al+2n/(n+l)):| (52)

forn+1.Ifn=1
e~ C[—EAIn A—A(ln |x| 4 §«) —3A2In A £ |x|?
— AN2(k|x|2—3k(1—«) |x]2)+ O(A3In A)].  (5°3)
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In (5-2) the terms are arranged in descending order of magnitude for z > 1. The dominant
termis then O(A). Ifn < 1 the leading term is O (A2+/#+D), Note that when n = 1 logarithmic
terms occur and in particular the first term is O(Aln A).

These terms define the order of magnitude of ¢ in the outer region. Moreover, it can be
shown that for n > 1 the first two terms in (5-2) and (5-3) correctly indicate the form of the
expansion in the respective outer solutions.

Thus for n > 1 the outer expansion is

€ = Aey+ ANy 1., (5-4)
where N=n/(n+1).
Similarly for n =1
¢ = Aln Ae; |+ Ay +.... (5-5)

For n < 1 only the first term is known, and
€= A2N€2N+.-.. (5'6)

The error terms in these expansions can be found once higher order terms in the inner layer
are known (see §6).

Terms are labelled ¢; corresponding to the power of A with which they are associated.
A double suffix notation is employed for logarithmic terms; the second suffix denotes the
power of the logarithm. (Difficulties arise with a conventional method of enumerating the
terms since the sequence depends on n.) It is convenient to discuss separately the cases
n>1,n=1,andn < 1.

5-2. Solution forn > 1

In conjunction with (5-4) the outer expansions for the variables p, u and T are
p = pol) - Apy(3) -+ Apyy () + ..., ete. (57)
It also follows that the mass flow can be expanded in a similar fashion,
m = my-+ Am; + ANmyy+-.... (5-8)

The term m,, which is O(1),isidentified with the zero-order approximation in the inner layer.
Substitution in equations (2:1) to (2:3) shows that the zero-order solution is the frozen
solution given by equations (3-2), with u,, = 0, save that the first of the relations (3-24) is
replaced by
po Tt~ =S, (5:9)
where $, is an arbitrary constant. Equation (5-9) follows from the differential form of (2-2).
Although it appears obvious that §, = 1, this does not immediately follow from the initial
boundary condition at —oo since these are not necessarily the appropriate inner limits of
this outer solution. However, matching with the downstream expansion of the inner
solution for the density formally shows that

So= 1. (5:10)

(The only constant term, of O(1), that arises from (4-20), together with (4-11) and (4-17),
is unity.)
27-2
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From conditions at the throat, where the local flow speed is equal to the frozen sound
speed (45 = y7y),

my=7y (%) (+D/2y=1) (5-11)

as expected.
The first-order departure from frozen flow, ¢, satisfies

de,/dx = Fy (0, —7,), (5-12)
where F; and 7, are defined in (3-4). Since
Fo(00—70) = O(]x|™)

as x—>—00, the solution of (5-12) can be written, for n > 1,
o =Kot [ R0)[7a—7,(5)] ds (513)

As 5->—00 v Kyt S a1 0 (] ).

From the outer expansion of the inner solution (5-2) it is seen that terms O(A) match if

The corresponding perturbations to the flow variables are given by

Pt My ‘

Po Uy My b

01 1 7; J" () . _

ot Ll RS G —0y(s)) ds = 8 (x), 515
p() 7_1 7:) 1 .—007-(')(5)( O( )) 1( ) ( )
Uy 7 T_1 € 24

TR P Rl )

where ¢, is an arbitrary constant and m,, as yet, is unknown. These equations can be solved
for p,, u;, and 73, to give

u%)ﬂl —uj
1— )2 ="M +8,+H,
( vlo/po vl ! !
uj \ 4 :
(1“5,“77))%=M1*S1“Hp (5-16)
)\ _ = (=1
(1) 7t = =)+ -1 1

The solution is singular at the geometric throat, defined by % = y7, unless
My = my[my = S (%) +H,(x,), (5-17)

where the suffix ¢ denotes the throat position. In general, the critical point, defined by the
frozen sonic point, will lie downstream of the geometric throat. For near-frozen flows,
A >0, the distance of this point from the throatis o(1) and as usual in perturbation solutions
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of this type it is sufficient to make the solution well behaved at the critical point defined by
the zero-order solution.

Equation (5-17) provides only a single relationship between the unknowns m, and ¢,
(which is implicitly contained in S (,)). Equation (5-16) can, however, be re-written, using
(5:17), so that these constants are eliminated in the expressions for u; and 77, but p, still
contains the constant ¢;. The inner limit, as x—>—o0, of p, is, from (5-16), (5-15) and the

zero-order solution, y—1
plNel_Tn |%[t7 4. (5-18)
From the inner solution (4-20) the downstream limit of the inner solution is, from (4-11) and
(417),

1 m} 1 C 1 C
p~1— —5(2;0 |x] =% — A== lx[l ny Al 2 ” h/c(" 1)/(”“)I‘( | ) +O0(A?).
(5°19)
Matching terms O(A) shows that ¢ = 0. (5-20)
10
0-8
0-6
T02 Po t
0-4
0-2
0
-1
(b) 1 .
0121 —H0-06 <
<
5/ !
¢, 008 ' 7P —{0-04 §
004 Vg 0-02
0 ﬁ I | ] 0
-1 0 1 2 3 » 4 5

Ficure 2. (a) Zero and (b) first-order solutions for flow through a hyperbolic nozzle,
with 6, = 1 and B = 7-394.
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As a numerical example the first-order perturbations have been evaluated for a diatomic
gas in the particular case of flow through a hyperbolic nozzle, 4 = 142, with

Q= Texp{—BOi(T-+—1)},

where B = 7-394. This latter expression is taken from the paper by Phinney (1964) and
provides a reasonable correlation of the experimental data for diatomic gases over a fairly
broad temperature range.

The initial conditions for the curves of ¢;, p;/p,, etc., given in figure 2(b) are such that
0, = 1. Figure 2 (a) shows the zero-order fully frozen solution and a combination of the two
figures enables the absolute values p,, etc., to be found.

In general higher terms will satisfy a similar set of relations to (5:13), (5-15) and (5-16),
with ¢,, M, etc., replaced by ¢, M., etc., where

de; /dx —-f(u i—j? —]9 Pi—j> z-—]) (521)
or 6 = Ki+F;(x),
and M, = mi/mo—l‘///i(/’i~j>”i~j)n

S = 6+F(picj> T_j» 6 €i-5), (5-22)

H, = Hyu,

i—j> z)

wherej > 0 and is not necessarily an integer. (Note that these quantities will not necessarily
depend on all the u;_;, etc., for all j > 0.) #,, #;, &¥;, and H; can be considered as known
functions of x. Matching with the outer limit of the inner solution for ¢ will determine K.
The solution will be well behaved at the throat provided, as in (5-17),

M;(x) = S;(%) +H; (%),
or myfmo+ (%) = ¢+;(%) + Hi(x), (523)

which gives one relation between m; and ¢,. As for ¢ = 1, the solution is uniquely determined
by matching the inner and outer solutions for p. For the lower-order terms p is a linear
function of £ in the inner layer and a simple rule can be found for obtaining m; in terms of
K, &;(x,) and H(x,) (see below and §7).

For terms which are generated in the near-frozen solution solely by the inner-layer
behaviour, i.e. terms which are not obviously present from the form of the outer equations
but which must be included in order to satisfy the matching conditions, the outer solution
adopts a very simple form. The second-order perturbation £,y belongs to this class, and

Foay=0, or ey=K,,. (5-24)
Matching with (5-2) shows that
Ky = n_;cl fa-D/@+ DT (;_%) . (5-25)
The corresponding quantities .#,,, etc., are
Moy =0, Foy=0, Hy=K,y[yTy(). (5-26)
From (5-23) TN gyt T 7'+ o (5-27)

my
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The inner limit for p,y is
eont Konfy+ O(|x|7%")

(using (5-16) and replacing S| by S,y, etc.). Matching with (5-20) gives

Ky y—1 9 L(n-1)/@n+1) 2
e L Ve

or oy = — Koy (5-28)
from (5-25). This simple result is a consequence of the fact that, to this order, p is a linear

function of E in the inner layer. Hence

My . _ V-1l (5-29)

and

Po y w2y 1, Y

Note that p,y, etc., are directly proportional to the fully frozen solutions p,, etc.
For the particular numerical example discussed above (0, =1, n = 2)

5-3. Solution for n =1

For n = 1 the appropriate outer expansions are

p = po+AlnAp, +Ap,+ ..., etc., (5+31)

and similarly for the mass flow. The zero-order outer solution is again easily shown to be the
fully frozen flow. For the first-order term, O(Aln A), the solution closely parallels that
outlined for the second-order term when n > 1, since

F ., =0. (5-32)
Matching with the outer expansion of the inner solution (5-3) shows that
6,1 = Ky, —3C. (5-33)

The solution for the flow variables obviously adopts a similar form to that already outlined
for the second-order solution when 7z > 1. In fact since p is again a linear function of E, to
this order, within the inner layer
m —1
€1,1 :_Kl, 15 ‘7721’31‘: —%—Kl,y (5-34)
The full solution follows from (5-30) with K, replaced by K| ;.
For the terms O(A)
F 1= F(0.—7), (5-35)
which is formally the same expression as for n > 1. However, for n = 1
F 1~ Ol 14+0(x[71)]

as x—>—o0 and ¢, is not bounded in this limit. This singular behaviour in what corresponds
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to the normal first-order term in a conventional near-frozen solution is, in effect, predicted
by the occurrence of the term O(Aln A). The solution for ¢, can be written

¢ = K+ J‘iw {ﬁl(s)m 1%}1} ds+sgn x In {1 4 |x|}. (5-36)

The factor (14 |#|)~! has been used, rather than |x|~!, to avoid any difficulties at x = 0.
Matching with the outer expansion of the inner solution (5-3) gives

K, =—1«C. (5-37)
'The flow variables are implicitly defined by
M (%) =0
* (F () C }
S (x) = — D — —
1(%) f~oo=7-;)(s) 13| sgn % In (14 |x]), (5-38)
6 (%)
H (x) = 5.
=T
Matching the inner and outer solutions for p gives
e, =—K, (5-39)
as usual. Hence
my[my = & (%) +H, (x,) — K. (5-40)

5-4. Solution for n < 1

Again the zero-order solution is the fully frozen one. The first order correction, O(A2Y),
is easily shown to be that given by (5-25) and (5-30) in § 5-2. It is not strictly possible, at
this stage, to obtain the next term for » < 1. Higher order approximations in the inner layer
show that this term, not surprisingly, is O(A) (see §6).

The separation of the solutions for # Z 1 is convenient but somewhat artificial. Moreover,
the case n = 1 is apparently only a particular example of a general property of the expan-
sion. From the outer expansion of the inner solution it appears that logarithmic terms may
eventually be generated for each rational value of z (see § 8). These distinctions, other than
for n = 1, will not appear until a later stage in the analysis. Certain logarithmic terms will,
however, arise for all values of n (see § 7).

6. HIGHER APPROXIMATIONS IN THE INNER LAYER
6:l.n>1

For simplicity, particular attention is given to the case n > 1. Some comments on the
solution when n < 1 are made at the end of this section.

Since, forn > 1
m = my+ Am; + A¥mgy+- ...,

it follows from the form of the inner equations (4-9) and (4-10) that in this case
U= U+ NN, _y+ N=DUp_py+ O (AN, A), (6:1)

and similarly for £. Note that the magnitude of the error term depends on whether n= 2.
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The solutions for U,_y and U,_,y are still uncoupled from the energy equation (see (4-10)).
Indeed
U=m[(AAY) + O(A2N) (6-2)

and the solution for the energy distribution E, correct to O(A21-M), could be obtained by
solving equation (4-9), ignoring all the terms on the right-hand side, and replacing U by
(6-2). Alternatively one can proceed systematically, as here, and deduce E,_y and E,_,,
directly from the results

m,a
Up_y = — 200 x| -0, (6-3)
0 *0

2
U, ..— "M% _ %
2_2N—d 02 a
0 0 0

) IXI—(n+2). (64)

The equations satisfied by higher terms in E are of the form

gEi = Li(Ei—ja U;-j),
d dZ
where =¥ + x|
and j > 0. In particular
LI_NZ—%(n+1)/c]X]"—lE0+C|X|—<"+1), (6:54)
2
Lyoow= gt (k1) R X" By y— 2 (04 1) k| K] 2By (51 = 2) | x)00. (0:50)
0 0 0 %

The corresponding solution for E,_y and E,_,,, satisfying the boundary condition E;-> 0 as
X—>—o00, are

_—24 C w1 Tl 1) | 20 .
Eyy= = ez G(n+l,z), (6-6)
__kC a A9\ 71 a a3 =D+ 1] 9,2 %2
Eyon= sy [{n(n—l)a%+2na;}z —I—{(n-l)a—%—- n%}G(O,Z)—Z s {272 2
2
+(n2-1)%Z}G(—2N,Z):I. (6:7)

6-2. Other values of n
Ifn=1
m = my+Aln Am,, |+ Am,+...

and a logarithmic term is now fed into the inner expansion. It follows from (4:10) that the
inner expansion for U is

U = Up+ AU+ Aln AT, + AU, + ... (6-8)

and similarly for E. The error term depends on higher order terms in the outer solution.
U, and E, are still given by equations (6-3) and (66) with n = 1, though the asymptotic
expansion for | X| -0 will differ. (This expansion is easily found from (6:6) in this special
case.) The higher order terms E| ,, etc., can also be derived without difficulty, but for lack
of space are not set down here.
28 VoL. 262. A.
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Whenn <1
m = my+ ANmyy+ ...

and the appropriate inner expansion is
U= U+ ANV _y+ANUyp+-...,

if1 > n> 1. Ifn < % the dominant first-order term is O(A2?"), which implies that it may be
necessary to divide the range of z into still smaller subdivisions (see, however, § 5-4 and § 8).
It does not seem worthwhile to pursue the precise form of the solution in these cases: in
principle, at least, the approach is the same as for » > 1. A further and perhaps more cogent
reason is that the algebra involved in computing the term U, is immense.

7. HIGHER APPROXIMATIONS IN THE OUTER LAYER, 7 > 1.

Similar arguments to those advanced in § 5-2 show, using the second-order inner solution,
that the outer solution can now be found correct to O(A?). From equations (4-8), (4:17),
(6:6), (6:7) and appendix II the outer expansion of the inner solution for ¢ is

A e (8 o
st el )
+A2{ e al (n+1)k| Ik (1%_%%)
3 In |x] — n—%dz__zﬁ...; +o(A?) (7-1)
where dy oy = »—«/fl:{?l—z%; — %%}K—I— (”-;1)2{%%; (;21_)_02}] (7-2)

The most striking feature of this result is the occurrence of the term O(A?In A). This
logarithmic factor arises for any value of n, as opposed to those generated by particular
rational values of n (for example, the term O(Aln A) which occurs in the expansion for
n=1).

It follows that the outer expansions now have the form

p = potApy+Apoy+ A?In Apy  + APpy+ .., ete.

From the outer form of the rate equation ¢, , is a constant and matching with (7-1) gives

_ Ck (1a} 2 a,
Ko == aitlig —iia) (73)
Tt follows as usual that
€y 1= "“K2, 1> (7-4)

and the solution for p, ,, etc., is given by (5-30) with K,y replaced by K, ;. For the example

outlined in § 5
K, | = 0-0369.
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For the terms O(A?) the algebra is somewhat more lengthy. The details are summarized
below. If 40 d7
Q T (d]-,)T—T0 0, = 711 (a‘j‘-,)T=To, (7-5)
A _
then fo=F, I:(/’%{l; + Q_:) — u_(l)) (T,—7,) —6‘1—0'1] , (7-6)
and it is convenient to write
% d
7, = f [+ g ds—sen e, ()
“1 R ol X %d_z} ] :
where g5(%) | x| n—l—l{ i In (14 x]) |- (7-8)
The solution for ¢, then matches with (7 -1) provided
Ky =—{Cl(n+1)}dy_sy. (7-9)
Similarly, the results for .#,, etc., are
Mo = —pytiy[pothg,
SR YT N
725, 2(7—1) ) T ®
" (7-10)
- f (fz + dls l) ds+sgn x g,(x),
e 1#
BT
which together with
8 €y = ‘“Kz, 1
(7-11)

Mylmy = & (%,) + Hy(%,) — M 5(x,) ~K,,)
define the solution for p,, etc.
Thesecond order solution is shown in figure 3 for the particular case discussed earlier in § 5.

0-20 v . _ .
1 ! e, | 010
016— —10-08
3@
Pa/Po 3
0-121— -TLIT, —0-06 |
—6 <
0-08 0-04 <
. —0-0 B\‘?’
~w, /Uy S
|
0-04 —0-02
0 | I | | | 0
-1 0 1 2 3 x 4 5

Ficure 3. Second-order solutions for flow through a hyperbolic nozzle, with 6, = 1 and B = 7-394,
28-2
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8. DiscussioN

It has been shown that the solution away from the reservoir zone for near-frozen flow
(A—0) through a convergent-divergent nozzle can be written, correct to O(A?2),

¢ = Ae;+A2eyy+ A2In Ae, |+ A%, +..., ete, (8:1)
where N = n(n+1), n> 1, and the asymptotic nozzle shape far upstream is described by
A~ |x|m.

Although it was obvious that a conventional near-frozen solution (expansion in integral
powers of A) could not remain valid within the reservoir zone, less apparent was the striking
influence that this domain could have on the outer expansion (8:1). The terms O(A2?") and
O(A%In A) are generated solely by this region. If z << 1 the term O(A2V) is then the dominant
one on the right-hand side of (8-1) and in this case the effect of the reservoir zone provides
the major deviation from a fully frozen flow.

Extension of the analysis to obtain higher order terms in the outer solution for n < 1
appears to offer no formal difficulties, but some care must be taken. Inspection of the outer
expansion of the inner solution suggests that logarithmic terms may in fact arise for all
rational values of n. If n > 1 it can be conjectured, for example, that logarithmic terms in x,
and thus implicitly in A, will occur if, with the use of (7-1),

—(n—1)+i(n+1)—j = 0. (8-2)

Here 2 and j are positive integers and the logarithmic term associated with this zero is
O(A**!ln A). Equation (8-2) certainly includes all rational values of # > 1. Notein particular
that the term O(A?In A) corresponds to the solution ¢ = 1, j = 2 which is independent of z.
Similar remarks can be made for n < 1 by examining the equivalent expansion to (7-1). In
that case, however, it does not necessarily follow that the only logarithmic term which is of
a greater magnitude than A% is O(A2ln A). (See, for example, the expansion given for
n=1in §5.)

The author would like to thank Dr N.C.Freeman and Mr J.L. Stollery for their

comments on various aspects of this paper.

APPENDIX I. THE CONSTANTS J,

—1 —1 —1
bzz——[luw +7— 1—w)e,— 1 c:l,
0 y 1 y ( 1) y

b= i+ G- D+ o= (o -1 + g+ T2,

by=—2(y—1)[{1+@—1)w}e;+(y—1)c,].
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ArpenDIX II. THE FuNcTION G(0, )

G(a,t) = etfws“"le"sds,

t

is defined for all values of «, £ > 0. If @ > 0 obviously
G(ayt) = e'[I'(e) =y (at)],

where y(a, t) is the incomplete I' function.
For non-integral values of & < 0, repeated integration by parts gives

o fatr JT(e+n+1) —y(atn+1,8)
60 == % ) oL k) )

where, here, n is any integer such that «+#n-+1 > 0. The asymptotic expansion, {0,
follows trivially from this expression.
If « is a negative integer, then

azl (= 1)rHlpre (—1)=etEi(t)
G(a,t) =— 5 )
@) == 2 )@= qa=1)..1
where a; = —oa and Ei(¢) is the exponential integral. In this case the asymptotic expansion
for small ¢ is,
S G i B o Vo A e Vi

rgo a (o, —1) ... (a,—1) o (e,—1)...1  a(e—1)... 1 +O(tlne),

where 7, is Euler’s constant.
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